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ABSTRACT 
The present work focuses on the analysis of the effectiveness of dynamic vibration absorber applied to 

cantilever beams excited by moving loads. In this project we have considered a cantilever beam for the vibration 

analysis. Analytical solution for a beam with varying geometry are complex and hence numerical methods like FEM 

is used in modal analysis of the beam due to first few modes since higher modes do not contribute to the total 

response. Equations of motions have been developed for cantilever beam with and without absorber and solved 

numerically by developing a code in MATLAB. The response results were validated using ANSYS work bench. The 

results obtained by MATLAB were also validated with analytical solutions.  
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1. INTRODUCTION  

The motivation of this work stems from the possibility of using vibration absorbers to damp out the 

undesirable responses which are an unmitigated evil. The task of reducing the undesirable effects of   resonant 

disturbances has been tackled employing a variety of approaches ranging from the introduction of active dynamic 

absorber as well as passive dynamic absorbers. For example, a number of works have shown both theoretically and 

experimentally the problem of controlling the vibration by using active dynamic absorbers. Work on DVAs was done 

rigorously from the development of helicopter rotor blades since 1963, and recently, for the defense mechanism 

against earthquakes. A force generator developed by Rockwell (1965) also acting as the absorber mass can be 

mounted on the beam. A sensor mounted on the other side of the beam detects the motion of the beam and sends a 

feedback signal to the generator, which in turn reacts against the motion of the vibration. 

Numerous applications involving active control of Dynamic Absorbers have dealt with actuating the 

absorber mass directly. This study is different in the way that the “active” component is implemented. This method 

of control has the potential to be less energy consuming, as the power required to adjust the spring variable is expected 

to be less than the power required to actuate the mass directly. This method is best described as an adaptive-passive 

approach to vibration control. Adaptive Helmholtz resonators, described by are an example of where adaptive-

passive methods have been used for narrowband applications. In the area of broadband applications, explains the use 

of adaptive-passive methods to vary the stiffness and damping of an engine mount. In the area of structural control. 

The results from this study indicated that the use of adaptive-passive vibration absorbers is feasible in the 

control of vibration. Self-adapting absorbers have been previously used in the vibration control of unbalanced 

rotating shafts. These come in the form of centrifugal absorbers, which can vary their pendulum angle in accordance 

with the angular speed. This results in the stiffness of the absorber increasing at a rate square to the angular speed, 

which means the Eigen frequency increases directly with the speed of the rotating. So in the present work of 

controlling the vibration we have been done using the passive dynamic absorber. The absorber has been modelled as 

a spring mass system. In terms of the installations and maintenance of control devices passive methods are cost 

effective are thus widely used today. 

Theoritical Analysis of Transverse Vibration of Fixed Free Beam: Consider slender beam subjected to transverse 

vibration. Here, M(x, t) is the bending moment, V(x, t) is the shear force, and 𝑓(𝑥, 𝑡) is the external force per unit 

length of the beam. Since the inertia force acting on the element of the beam is ρA(x) 
d2𝑤

dx2
(𝑥, 𝑡) balancing the forces 

in z direction gives: 

 

Figure.1. Free body diagram of a section of beam under transverse vibration 

-(𝑉 + dV) +  𝑓(𝑥, 𝑡) + 𝑉 =  ρA(x) 
d2𝑤

dx2
(𝑥, 𝑡)  2.1                       

Where ρ is the mass density and A is the cross-sectional area of the beam. The moment equation about the 

y axis leads to 

                                                   (M+dM)  - (V + dV)d𝑥+𝑓(𝑥, 𝑡)d𝑥(
d𝑥

2
) − M = 0  2.2 

By writing. 
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                                                                           dV=
𝜕𝑉

𝜕𝑥
𝜕𝑥 and dM=

𝜕𝑀

𝜕𝑥
𝜕𝑥 

And neglecting terms involving second powers in dx, the above equations can be written as 

                                                                         −
𝜕𝑉(𝑥,𝑡)

𝜕𝑥
+  𝑓(𝑥, 𝑡) =  ρA(x) 

𝜕2𝑤(𝑥,𝑡)

𝜕t2    2.3 

                                                                                   
∂M(x,t)

∂x
−  V(x, t) = 0  2.4 

By using the relation V =
∂M

∂x
 from above two equations 

                                                                    
 ∂2M(x,t)

∂x2 +  f(x, t) =  ρA(x) 
∂2w(x,t)

∂t2      2.5 

From the elementary theory of bending of beam, the relationship between bending moment and deflection 

can be expressed as 

                                                                     𝑀(𝑥, 𝑡)=ΕΙ 
𝜕2𝑤(𝑥,𝑡)

𝜕t2    2.6 

Where Ε is the Young’s modulus and Ι(𝑥) is the moment of inertia of the beam cross section about the axis. 

Substituting above two equations, we obtain the equation of the motion for the forced transverse vibration of a non-

uniform beam: 

                                                   
𝜕2

𝜕𝑥2 [ΕΙ(𝑥) 
𝜕2𝑤(𝑥,𝑡)

𝜕t2 ] + ρΑ(𝑥)
𝜕2𝑤(𝑥,𝑡)

𝜕t2 = 𝑓(𝑥, 𝑡)  2.7 

For a beam with uniform cross-section, the above equation reduces to 

                                                  [ΕΙ(𝑥) 
𝜕2𝑤(𝑥,𝑡)

𝜕t2 ]  + ρΑ(𝑥) 
𝜕2𝑤(𝑥,𝑡)

𝜕t2 = 𝑓(𝑥, 𝑡)  2.8 

For free vibration, 𝑓(𝑥, 𝑡) = 0, and so the equation of motion becomes 

     𝑐2 d4𝑤

dx4
(𝑥, 𝑡) +

𝜕2𝑤(𝑥,𝑡)

𝜕t2 = 0  2.9 

Where     𝑐 = √
𝐸𝐼

𝜌𝐴
 

Initial Conditions: Since the equation of the motion involves a second order derivative w.r.t time and fourth order 

derivative w.r.t 𝑥, two initial equations as well as four boundary conditions are needed for finding a unique solution 

for  𝑤(𝑥, 𝑡) . Usually, the values of transverse displacement and velocity are specified as 𝑤0(𝑥) and 𝑤0(𝑥) 𝑎𝑡 𝑥 =
0. w x t = 0, so that the initial conditions become:                

𝑤(𝑥, 𝑡 = 0) = 𝑤0(𝑥)   2.10                            
𝜕𝑤(𝑥,𝑡=0)

𝑑𝑡
= 𝑤0    2.11 

The free vibration solution can be found using the method of decoupling of variables as 

𝑤(𝑥, 𝑡) = 𝑊(𝑥)𝑇(𝑡)   2.12 

Substituting this equation in the final equation of motion and rearranging leads to 

 
𝑐2

𝑊(𝑥)

𝑑4𝑊(𝑥)

𝑑𝑥4 =  −
1

𝑇(𝑡)

𝑑2𝑇(𝑡)

𝑑𝑡2 = 𝑎 = 𝜔2     2.13 

Where 𝑎 =  𝜔2, a positive constant Equation is can be written as two equations 
𝑑4𝑊(𝑥)

𝑑𝑥4 −  𝛽4𝑊(𝑥) = 0    2.14 

                               
𝑑2𝑇(𝑡)

𝑑𝑡2 +  𝜔2𝑇(𝑥) = 0   2.15 

Where 𝛽4 =
𝜔2

𝑐2 =
𝜌𝐴𝜔2

𝐸𝐼
 

The solution to time dependent equation can be expressed as 

                                                                               𝑇(𝑥) = 𝐴 cos 𝜔𝑡 + 𝐴 sin 𝜔𝑡   2.16 

Where, A and B are constant that can be found from the initial conditions. For the solution of displacement 

dependent equation we assume 

𝑊(𝑥) =  ∁𝑒𝑠𝑥   2.17 

Where ∁ 𝑎𝑛𝑑 𝑠 are constants, and derive the auxiliary equation as  

𝑠4 − 𝛽4 = 0 

The roots of this equation are          𝑠1,2 =  ±𝛽                         𝑠3,4 =  ±𝑖𝛽    
Hence the solution of the equation becomes: 

                                                 𝑊(𝑥) = 𝐶1𝑒𝛽𝑥   + 𝐶2𝑒−𝛽𝑥   + 𝐶3𝑒𝑖𝛽𝑥   + 𝐶4𝑒−𝑖𝛽𝑥         2.18 

   𝑊(𝑥) = 𝐶1 cos 𝛽𝑥 + 𝐶2 sin 𝛽𝑥 + 𝐶3 cosh 𝛽𝑥 + 𝐶4 𝑠𝑖𝑛ℎ 𝛽𝑥  2.19 

or 

 𝑊(𝑥) = 𝐶1(𝑐𝑜𝑠𝛽𝑥 + 𝑐𝑜𝑠ℎ𝛽𝑥) + 𝐶2(𝑐𝑜𝑠𝛽𝑥 − 𝑐𝑜𝑠ℎ𝛽𝑥) + 𝐶3(𝑠𝑖𝑛𝛽𝑥 + 𝑠𝑖𝑛ℎ𝛽𝑥) + 𝐶4(𝑠𝑖𝑛𝛽𝑥 − 𝑠𝑖𝑛ℎ𝛽𝑥)    2.20 

 

The constants 𝐶1 𝐶2 𝐶3 𝑎𝑛𝑑 𝐶4  can be found from boundary conditions. The natural frequencies of the beam 

are computed from: 
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                                                                           𝜔 = 𝛽2√
𝐸𝐼

𝜌𝐴
 = (𝛽𝑙)2√

𝐸𝐼

𝜌𝐴𝑙4    2.21 

Table.1. Value of roots 

   Roots (𝒊) 𝜷𝒊𝒍 

1. 1.875104 

2. 4.69409 

3. 7.85475 

The function 𝑊(𝑥) is called normal mode or characteristic function of beam and 𝜔 is natural frequency of 

vibration.  

Fixed free beam: The dimensions and the material properties for a uniform fixed free beam (cantilever beam) studied 

in this paper are: Material of beam = Al, Total length (L) = 1 m, width (B) = 0.05m, height (H) = 0.005 m, moment 

of inertia (I) = 5.208*10^-10 m4, Young’s Modulus (E) = 70e9, mass per unit length m = 0.6750 kg, mass density = 

2700 kg/ m3. 

Putting all required data in Eq 2.21 we get the five frequencies for five modes as shown in table.2.  

Table.2. Mode shape frequency 

        Mode  Frequency in Hz 

           1 4.1126 

           2 25.7732 

           3 72.1659 

           4 141.4162 

Numerical Approach for Transverse Vibration of Fixed Free Beam Using ANSYS: We have investigated the 

free vibration of fixed free beam using the ANSYS program, a comprehensive finite element package. We used the 

ANSYS structural package to analyse the vibration of fixed free beam. The finite element method (FEM) is 

a numerical method for solving problems of engineering and mathematical physics. It is also referred to as finite 

element analysis (FEA). Typical problem areas of interest include structural analysis, heat transfer, fluid flow, 

and electromagnetic potential. The analytical solution of these problems generally require the solution to boundary 

value problems for partial differential equations.   

 a  b  c 

Figure.2. First 3 Natural Frequencies for different modes of vibration for cantilever beam 

Table.3. Mode shape frequency (Ansys) 

Mode Freequency (Hz) 

1 4.146 

2 25.981 

3 41.112 

Numerical Approach for Vibration of Fixed Free Beam Using Matlab: We have investigated the free vibration 

of fixed free beam with and without vibration absorber using the Matlab program. The amplitude response obtained 

for cantilever beam without absorber has been suppressed using vibration absorber. The absorber has been modelled 

as spring mass element. The response of a beam subjected to various loads like harmonic and random excitation is 

controlled using vibration absorber placed at optimum locations along the length of the beam. The response is 

controlled by choosing the natural frequency of the absorber close to the bending modes.  

Matlab Program for Cantilever Beam without Absorber: 

% 

ek(1,1)= 12;     ek(1,2)= 6*L;             ek(1,3)=-12;      ek(1,4)=6*L; 

ek(2,1)=ek(1,2); ek(2,2)=4*L^2;            ek(2,3)=-6*L;     ek(2,4)=2*L^2; // element stiffness matrix 

ek(3,1)=ek(1,3); ek(3,2)=ek(2,3);          ek(3,3)=12;      ek(3,4)=-6*L; 

ek(4,1)=ek(1,4); ek(4,2)=ek(2,4);          ek(4,3)=ek(3,4); ek(4,4)=4*L^2; 

ek=ek*kfactor;                                                                                        // generalized stiffness matrix 

% 

em(1,1)=13/35;     em(1,2)=11/210*L; 

em(1,3)=9/70;      em(1,4)=-13/420*L; 

http://www.jchps.com/
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em(2,1)=em(1,2); em(2,2)=1/105*L^2;   em(2,3)=13/420*L;                // element mass matrix 

em(2,4)=-1/140*L^2; 

em(3,1)=em( 1,3); em(3,2)=em(2,3); em(3,3)=13/35; 

em(3,4)=-11/210*L; 

em(4,1)=em(1,4); em(4,2)=em(2,4); em(4,3)=em(3,4); em(4,4)=1/105*L^2; 

em=em*m;                                                                                              // generalized mass matrix 

% 

Matlab Program for Cantilever Beam with Absorber:  

% 

ek(1,1)= 12;     ek(1,2)= 6*L;             ek(1,3)=-12;      ek(1,4)=6*L; 

ek(2,1)=ek(1,2); ek(2,2)=4*L^2;            ek(2,3)=-6*L;     ek(2,4)=2*L^2; 

ek(3,1)=ek(1,3); ek(3,2)=ek(2,3);          ek(3,3)=12;      ek(3,4)=-6*L; 

ek(4,1)=ek(1,4); ek(4,2)=ek(2,4);          ek(4,3)=ek(3,4); ek(4,4)=4*L^2; 

ek=ek*kfactor; 

% 

em(1,1)=13/35;     em(1,2)=11/210*L; 

em(1,3)=9/70;      em(1,4)=-13/420*L; 

em(2,1)=em(1,2); em(2,2)=1/105*L^2;   em(2,3)=13/420*L; 

em(2,4)=-1/140*L^2; 

em(3,1)=em( 1,3); em(3,2)=em(2,3); em(3,3)=13/35;  

em(3,4)=-11/210*L; 

em(4,1)=em(1,4); em(4,2)=em(2,4); em(4,3)=em(3,4); em(4,4)=1/105*L^2; 

em=em*m; 

% for cantilever dof 1 and dof 2 are fixed 

Ka=6.7861;Ma=0.01; 

GK(adof,adof)=GK(adof,adof)+ Ka; 

GK(adof,ndof)=GK(adof,ndof)-Ka; 

GK(ndof,adof)=GK(ndof,adof)-Ka; 

GK(ndof,ndof)=GK(ndof,ndof)+Ka; 

GM(ndof,ndof)=GM(ndof,ndof)+Ma; 

2. RESULTS AND DISCUSSION 

Numerical (FEA) results: 

Table.4. Frequency vs amplitude (Matlab) 

 

 

 

 

 

 
Figure.3. Graphicalrepresentation of the modal frequencies vs amplitude 

From the figure.3, the amplitude coresponding to the first three fundamentle modes were obtained using 

ansys which are listed in Table-4. The amplitude was found to be more at the free end of the beam. 

 

 

 

 

Mode Frequency Response 

1 4.146 0.4383 

2 25.981 0.01085 

3 41.112 0.00138 
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Numerical (MATLAB) results without absorber: 

Table.5. Modal frequency 

 
 

 
Figure.4. Graphicalrepresentation of the modal frequencies vs amplitude (MATLAB) 

From the figure.4, the amplitude coresponding to the first three fundamentle modes were obtained using 

Matlab which are listed in Table.5. The amplitude was found to be more at the free end of the beam. The same results 

were verified using ansys. 

Numerical (MATLAB) results with absorber: 

 a  b 

 c  d 

Figure.5. Frequency response of beam for various absorber frequencies (a) X/L=0.25 (b) X/L=0.5 

(c) X/L=0.75 (d) X/L= 1 
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We have tried to suppress the amplitudes by attaching the absorber at various locations of the cantilever 

beam. The absorber was modelled as a spring mass element. We have tuned the absorber frequency at different 

locations to supress the fundamental modes. Fig.5(a) shows the reduction in amplitude about 50% for absorber 

frequency 25.14 Hz. Fig.5(b) shows the reduction in amplitude about 62.14 for absorber frequency 25.14 Hz. Fig.5(c) 

shows the reduction in amplitude about 63% for absorber frequency 25.14 Hz. Fig.5(d) shows the reduction in 

amplitude about 64.14% for absorber frequency 25.14 Hz. 

Program validation: We have studied the free vibration of fixed free beam by using theoretical approach and the 

numerical approach using the MATLAB program, it has been found that the relative error between these two 

approaches are very minute. 

The percentage error between the numerical and theoretical methods is shown in Table.6. 

Table.6. Percentage Error 

Mode Theoretical frequency in Hz Numerical frequency from MATLAB program in Hz Percentage Error % 

1 4.1126 4.1126 0 

2 25.7721 25.7733 0.0046 

3 72.2132 72.1659 0.0065 

Since the relative error between the two approaches are very minute, so it can be concluded that theoretical 

data is in good agreement with numerical results with negligible error. 

3. CONCLUSIONS 

Initially, we obtained the equation for mode shape frequency theoretically and by analyzing this equation on 

the fixed free beam which we were used in this paper. The numerical study using the ANSYS and MATLAB program 

allows investigates the free vibration of fixed free beam to find out mode shape and their frequencies with high 

accuracy. Therefore it can be concluded that theoretical data is in good agreement with numerical results with 

negligible error. Moreover, it was found that When the absorber mass was varied, there was no satisfactory reduction 

in the response at all the nodes. When the absorber frequency is close to the particular mode, then that mode is not 

excited. The response was found to be less at the centre and at the free end of the beam. The total reduction in 

response was found to be 64.16% at the   free end of the cantilever beam. 
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